
Attacks target:

Confidentiality: protected data stays protected-

Integrity: can’t modify protected data-

Availability: protected data can be served-

Types of attacks

Software bugs-

Hardware bugs-

Humans-

Unintended characteristics

Side channel, bad randomness○

-

Thinking as an attacker

Look at things as they are, not as others see them-

See the gaps and weaknesses in the security-

Thinking as a defender

Data to protect, and what properties to enforce?-

Who are the attackers, motivation? What kind of attack to prevent-

Countermeasures: cost vs benefit, technical vs non-technical-

Minimize complexity - high complexity more prone to failure-

Threat Model: set of assumptions about the attacks that a security system is trying to protect against

Iterative Secure Design: Identify the weaknesses of the system and focus on correcting

Overview
Tuesday, April 4, 2023 3:05 PM

 CSE 127 Page 1

Control a process = get the privileges of its UID

How to control a process?

Send specially formatted input to process-

X86

Variable-length instructions-

Register poor: 8 reg, 6 GP-

EIP: program counter (instruction pointer)

Memory layout:-
.text : machine code

.data : initialized global variables

.bss : uninitialized global variables

heap : dynamic variables

stack : local variables, function call stack

env : environment variables (OS env vars), program arguments

Syntax: opcode src, dst

Constants (to be loaded into a register) prefixed by $○

Registers preceded by %○

Indirection using ()○

Examples:○

sub $16, %ebx

movl (%esi) %eax

-

pushl %eax

popl %eax

jmp -20

call FOO // saves instruction pointer to the stack and jumps to the argument value

ret // pops the stack into the instruction pointer

leave // copy EBP to ESP and restore the old EBP from stack

lea (%ebx + 8), %eax // adds 8 to ebx and stores to eax

Function calls:

Locals are organized into stack frames

Callees exist at lower address than the caller▪

○

On call:

Caller: Save %eip so you can restore control▪

Callee: Save %ebp so you can restore data▪

○

Implementation details are largely by convention

Somewhat codified by hardware▪

○

-

X86, Instruction Format, Syntax, Endianness,

Arrays
Tuesday, April 4, 2023 4:27 PM

 CSE 127 Page 2

Somewhat codified by hardware▪

X86 is Little Endian:

0x12345678 =

0x78 0x56 0x34 0x12

Arrays: written in the same order as expected

 CSE 127 Page 3

Idea:

In the following code:

If size of argv is more than size of buf, then strcpy will overwrite the EIP stored on stack, which allows use to

jump to a value we define and start executing a code.

Uses:

Denial of service (run some code which will crash)-

Control flow hijacking (run some code to hijack the control flow)-

Example: Shellcode

Note: We don’t know where these addresses will be

Core logic:

Problems:

Code may not be the right size to overrun the buffer, pad with 0s-

Strcpy stops when it hits 0, use alternative machine code which avoids 0s-

How to know what value to override ptr? Try to leak some address in stack-

What about small buffers? Just override ptr and jump to ENV

Defense:

Bounded buffer copies (strncpy, strncath)-

Buffer Overflow Attack
Thursday, April 6, 2023 4:09 PM

 CSE 127 Page 4

Bounded buffer copies (strncpy, strncath)-

Sanitize input (only accept characters which are expected)-

 CSE 127 Page 5

Idea: A poorly written program with an off by one error:

We can use this extra byte copied to modify the least significant byte of the saved FP so that the function returns

to a fake frame.

Function Pointer overflow

Format String:

Idea: if you have printf(string), what happens if string contains a format character?

Can be used to print out the values in the caller's frame

We can use this to look at values in memory

Attacking: using %n with argument, printf will write the number of characters into the argument address

We can use this to write memory

Use % to advance the internal stack pointer until we reach the caller's return pointer○

Make the input string the right size so that ○

When %n is called, the length so far is copied into a byte of the return address○

Repeat 4 times until the return pointer is fully overridden○

Format String Attacks
Tuesday, April 11, 2023 3:27 PM

 CSE 127 Page 6

Idea: we can use integer overflow to control the size of buffers

Integer Overflow
Thursday, April 13, 2023 3:52 PM

 CSE 127 Page 7

Canary: push a canary value to the stack, compare value before and after function call to ensure the stack was not

overwritten

Also ensure that sensitive local variables are at the top of the stack, and buffers are near canaries-

We can chain vulnerabilities: exploit one vulnerability to read canary, exploit another to perform stack overflow-

We can brute force: keep guessing canaries until it succedes-

Separate Control Stack: Control data is stored to a separate stack

Address Space Layout Randomization: Randomize addresses so that exploiters have a harder time to guess addresses

Write XOR Execute: writable pages should not be executable

Low Level Mitigation, Stack Canaries
Thursday, April 13, 2023 3:54 PM

 CSE 127 Page 8

Return to lib.c - Idea: lib.c contains the function system(), which executes the argument specified

Payload:

ROP - Idea: stitch together code using the last lines of functions just before return instruction

ROP Gadgets: code sequences ending in ret instruction.-

Commonly added by compiler (at end of function)-

But also (on x86) any sequence in executable memory ending in 0xC3 (ret).

x86 has variable-length instructions○

Misalignment (jumping into the middle of a longer instruction) can produce new, unintended, code sequences○

-

Return to lib.c, Return Oriented Programming
Tuesday, April 18, 2023 3:34 PM

 CSE 127 Page 9

ROP and other return control protection: Only allow returns, calls, etc to go to known good targets

Restrict control flow only to legit paths

Direct control transfer (known at compile time)○

Indirect control transfer (depends on registers, can't predict)○

-

We note that we do not need to monitor direct control transfers-

Assign all indirect jump targets with labels-

Control Flow Integrity
Tuesday, April 18, 2023 4:16 PM

 CSE 127 Page 10

Trust boundaries: Each interface may have a different level of trust

Processors: memory reference, privileged instructions-

Software: System calls, file accessors, etc. -

Operating System Security
Tuesday, April 18, 2023 4:44 PM

 CSE 127 Page 11

Process abstraction: Abstract running program into processes, which have ID and permissions

Isolation: Use permissions, paging and segmenting to protect process memory-

Process/kernel separation: privileged kernel operations can only be performed by the kernel-

Unix user permissions:

Permissions in UNIX granted by UID-

Each file has Access Control List (ACL)

Grants permissions according to UID and roles (owner, group, other)○

Everything in UNIX is a file○

-

Use two IDs: Real UID, and Effective UID

RUID - typically the same as the user ID of parent process, determines which user started process○

EUID - determines current permissions of process, used in security checks○

Program can have setuid, which sets the EUID of the process temporarily to the file owner

Can use to do things like set passwd or call sudo▪

Allows user called process to temporarily elevate privilege ▪

○

-

Process Isolation: limit processes to write only their own memory

Virtual memory: abstract memory space for each process that only it can access-

Translate virtual addresses to physical addresses

Keep track of processes and their permissions for addresses○

-

Paging: translate blocks of addresses (usually 4KB or multiple)

Use a tree to store page mappings○

Page descriptors describe how a process can access memory (read/write/execute)○

-

Process/kernel separation:

Privilege level: Increase processor privilege when kernel is running

Higher privilege allows process to perform sensitive actions○

-

Elevating privileges:

Prepare arguments including ID of desired entry point○

Execute special instruction that initiates transfer○

-

System calls: expensive to flush TLB, page table base register, etc - but are used frequently

Map kernel virtual memory to every process memory, but is inaccessible when in user mode

Use privilege elevation to control kernel calls▪

-

-

Process Abstraction
Thursday, April 20, 2023 3:51 PM

 CSE 127 Page 12

Idea: Kernel memory and control flow should be protected from usermode processes

Assume all usermode processes are untrusted and potentially malicious-

Avoid kernel being manipulated into abusing its privileges -

Example: read(int fd, void * buf, size_t count)

Reads count bytes from fd into buf-

What if buf is the address of a sensitive data structure in the kernel-

Mitigation:

copy_to_user(), copy_from_user(): Safely copy between user and kernel buffers, prevents values changing during

execution

-

Hardware: Instructions to mark pages as inaccessible to kernel or mark pages as inaccessible to processes-

Kernel Security and Exploits
Thursday, April 20, 2023 4:28 PM

 CSE 127 Page 13

Browser security model:

Sandbox: protect local system from web attacker-

Same origin policy: protect web content from other web content-

Sandbox:

No direct file access-

Limited access to OS, network, browser data-

Limited access to data from other sites-

Tabs and iframes (run in their own process)-

Same origin policy:

Only allow requests from the same origin = (scheme, domain, port) -

DOM: Only code from the same origin can access HTML elements on another site or iframe-

Cookies: Sites can only read/receive cookies from the same domain-

Scripts: included a script, it runs in the context of the site and has access to all HTML elements-

Cross Origin Resource Sharing:

Commonly: Access-Control-Allow-Origin: *-

Allows certain other origins to make requests, but commonly * used to denote any other origins-

Plugins: enable functionality beyond browser sandbox, increases the attack surface

Extensions: extends functionality of the browser, use privilege separation and least privileges to contain malicious

extensions

Web Security
Tuesday, April 25, 2023 3:27 PM

 CSE 127 Page 14

XSS: Site receives input from user and blindly trusts the validity of the input

Reflective - Use XSS against site to reflect malicious code back to the user:

Stored - Manipulate site directly and inject malicious code directly into site

Mitigation: sanitize or escape problematic characters or strings, tricky and workarounds often found

Blocking "<" and ">" : event listeners-

Blocking certain tags : <div> often required but can have js loaded

<div style="background:url('javascript:alert(1)'">○

-

Blocking "javascript" : java\nscript-

Content security policy - Allow list for executable scripts-

XSS
Thursday, April 27, 2023 3:45 PM

 CSE 127 Page 15

SQL queries made by appending input data to query string - can inject other SQL commands as part of input

Ex: Login to database

Mitigation: Validate inputs

Filter out special characters-

Prepared statements: prevent inputs from being interpreted as statements-

SQL Injection
Thursday, April 27, 2023 4:22 PM

 CSE 127 Page 16

Idea: We want to steal authentication such as cookies

Cross Site Request Forgery
Thursday, April 27, 2023 4:36 PM

 CSE 127 Page 17

Syntax: how communication is specified and structured

Format, order messages are sent and received-
Semantics: What communication means

Actions taken when transmitting, receiving-

Packet: single unit of data, each layer will add headers to the packet

Stack of layers: define abstraction boundaries

Link: connects hosts to local network (ethernet)

Messages organized into frames-

Every node has globally unique 6 byte MAC address-

Originally broadcast protocol, now is switched (wifi still broadcast)-
IP: Connectionless delivery model

Best effort: no guarantees about delivery-

Hierarchical addressing scheme-

Note: there are no security measures except the checksum

ARP: Address Resolution Protocol

Maps IP address to MAC address-
BGP: Border Gateway Protocol

Allows routers to exchange routing information to connect local networks together-
TCP: Controls transmission of multiple packets

Ports: identifies a specific application -
UDP: Offers no service quality guarantees

Essentially a transport layer protocol that is a wrapper around IP-
DNS: handles mapping between domain names and IP addresses

Network Protocols
Tuesday, May 2, 2023 3:53 PM

 CSE 127 Page 18

DDoS attacks: Denial of service

Take down DNS servers so clients can't use internet-

DNS Cache Poisoning

Send a DNS request

DNS server makes a request to Root server and gets a referral to nameserver○

DNS makes a request to the name server○

-

Race the real name server in responding to the nameserver request

Guess the QID for nameserver request○

Guess the source port for the request○

Respond with the fake IP address○

-

DNS server receives the fake response and caches the fake IP-

We can get the name server's port and QID range by using a test query to a name server under attacker's control

Variation: poison cache for NS record instead:

Defenses:

Randomize QID○

Randomize UDP port○

DNSSec: Cryptographically sign DNS responses, verify via chain of trust from roots on down○

DNS Attacks
Tuesday, May 9, 2023 3:34 PM

 CSE 127 Page 19

Pretend to be a trustworthy source

Phishing Attacks
Tuesday, May 9, 2023 4:03 PM

 CSE 127 Page 20

IP Prefix = CIDR: a.b.c.d/n means the first n bits are fixed. Effectively represents a range of addresses

BGP: Policy based routing across autonomous systems

Each AS has an IP ranged assigned to it-

BGP routes traffic across AS graph, does not respond well to frequent node outages

Nodes broadcast packets to all connected nodes○

-

IP (Prefix) Hacking:

Any AS can advertise any prefix, attacker can advertise a more specific prefix and intercept BGP routing-
Ex:

youtube = 208.65.152.0/22

youtube.com = 208.65.153.238

Pakistan ISP advertises 208.65.153.0/24

Because Pakistan ISP is more specific, all traffic to youtube rerouted to Pakistan

Pakistan ISP broadcast more specific route across BGP, AS prefers this better path because more efficient▪

Mitigation: BGPSec - cryptographically sign route announcements

AS can only advertise at itself-

Cannot advertise for IP prefixes it does not own-

IP Prefix (CIDR), BGP, IP Hacking
Tuesday, May 9, 2023 4:08 PM

 CSE 127 Page 21

Denial of Service: prevent users from accessing victim site

Application: lock all user accounts by repeatedly guessing passwords-
DDoS: get pool of machines to send many malicious traffic-
Reflected: Send spoofed IP packets to random server who floods to victim with a lot of data-

TCP SYN Flood: Attacker floods target with TCP SYN requests, but does not send ACK, target waiting for ACK but never comes

Reflected DoS:

ARP Poisoning: Intercept ARP requests to forward fake IP to MAC address mappings to forward packets to attacker's machine

Mitigation:

Static ARP map for critical services○

ARPWATCH: logs ARP mapping changes○

Antidote: daemon service that monitors for unusually large ARP requests○

IP Spoofing, ARP Security
Tuesday, May 9, 2023 4:34 PM

 CSE 127 Page 22

Firewalls:

Access Control Policies:

Default allow: permit all services, block specific ones-

Default block: block all services, permit specific ones known to be good-

Packet-filtering firewalls can take advantage of the following information from network and transport layer headers:

Source IP-

Destination IP -

Source Port -

Destination Port-

Flags (e.g. ACK)-

Keep state on known open tcp connections: allows response packets to outbound requests

Circumventing:

Iodine IP over DNS-

SSH Tunnel-

VPN-

NAT: Network Address Translation

Idea: IP addresses do not need to globally unique

NAT maps between two address spaces

Proxies: Man in the middle application

Enforce policies for specific protocols:

SMTP: scan for viruses-

SSH: Log authentication-

HTTP: Block forbidden URLs-

-

Network Intrusion Detection Systems: Passively monitor network traffic for signs of attack

No understanding of higher level protocols-

General Mitigations
Thursday, May 11, 2023 4:10 PM

 CSE 127 Page 23

No understanding of higher level protocols-

Must be able to track packets of various multi packet connection standards-

Benefit:

No need to modify or trust end systems-

Cover many systems with single monitor-

Centralized-

-

Cons:

Expensive: 10Gbps = 1M packets/sec = ns/packet to check-

Vulnerable to evasion attacks: incomplete analysis and imperfect observability-

-

Log analysis: run scripts to analyze system log files

Vulnerability Scanning: probe internal systems and launch attacks on yourself

Honeypot: Deploy sacrificial system with no operational purpose

 CSE 127 Page 24

Cryptography
Thursday, May 18, 2023 3:22 PM

 CSE 127 Page 25

Idea: use the same key to encrypt and decrypt data

Encrypt(key, plaintext) -> ciphertext-

Decrypt(key, ciphertext) -> plaintext-

Correctness: Decrypt(Encrypt(m)) = m-

One-time key: use key once per message-

Multi-use key: use the same key for multiple messages-

One Time Pad:

Generate key as long as plaintext-

ciphertext = plaintext XOR key-

Pros: theoretically information secure, ciphertext reveals no information about plaintext-

Cons: can only use key once, key must be as long as the message-

Stream Cipher:

use pseudo random to generate a long key from a shorter seed-

Cons: can only use key once because attacker can generate messages from multiple uses of same key-

Block Cipher:

Operate on fixed block sizes with fixed size key-

Electronic CodeBook: Apply same operation on each block-

Cipher Block Chaining: Use previous ciphertext to encrypt next block-

Counter: use a counter as input to each block-

Hashing: h(x) - Lossy compression function, map input message to output digest, should appear to be uniform

One-way: Given it should be very difficult to find -

Collision resistance: should be difficult to find

Birthday paradox means that brute-force collision search is only

 , not ○

-

Weak collision resistance: given an arbitrary , hard to find
Complexity:

-

Symmetric Key Cryptography, MAC, Hashing
Thursday, May 18, 2023 3:31 PM

 CSE 127 Page 26

Complexity: ○

Common Hash Functions:

MD5:

128-bit-

Collision broken in 2004-
SHA-1

160 bit-

Collision broken in 2017-
SHA-256, 512, 224, 384

SHA-3

Message Authentication Code: Compute code when sending message, check code against received message to confirm integrity

Use secret key to perform MAC calculation-

HMAC: Construct MAC from hash function, where K is the encryption key and message m-

 means concatenation

Integrity and encryption: encrypt then MAC-

 CSE 127 Page 27

Problem: we want to establish a shared key safely with a recipient

Idea: Use two keys

Public key: used to encrypt or verify-
Private key: used to decrypt-

Diffie-Hellman:

Public parameters:

 a large prime number

 for some integer i

Alice chooses a number and send to Bob

Bob chooses a number and send to Alice

Alice computes

Bob computes

Textbook RSA: Generate public and private key using factoring and discrete log hardness

Attack: Malleability - Given c = Enc(m) = m^e mod N, forged ciphertext Enc(Ma) = ca^e mod N

Attack: Chosen ciphertext - Given c = Enc(m) for unknown m, attacker asks for Dec(ca^e mod N) = d and computes m = da^-1

mod N

RSA PKCS #1 v1.5: encrypter pads message

Digital signatures: want to attach signature to message to verify message

Sign(sk, m) = s = m^d mod N

Verify(pk, m, s) = true|false = m = s^e mod N

Sign by padding a hashed message

Asymmetric Key Cryptography, Digital Signatures
Tuesday, May 23, 2023 4:18 PM

 CSE 127 Page 28

Provides confidentiality, integrity, authenticity

Steps:

Negotiate with server to establish a key exchange protocol-

Use certificates to verify authenticity of server's public key-

Use Diffie-Hellman key exchange and Key Derivation Function (KDF) to establish symmetric keys

ke, km = KDF(g^ab)○

-

Use RSA signature to sign the two DH params and ensure authenticity of endpoint

Add nonces to avoid signature reuse○

-

How to trust keys? Certificates

Certificate Authorities: trusted intermediary

Verify public keys and sign them in exchange for money○

Transitively trust keys signed by authority○

-

Attack: Proxy connection using rogue certificate

Mitigations:

Hard code popular websites certificates into browsers○

Certificate transparency - Public append-only log of certificate issuances to track rogue certs○

TLS 1.3: Encrypt handshake after establishing key exchange

Transport Layer Security
Tuesday, May 30, 2023 3:31 PM

 CSE 127 Page 29

 CSE 127 Page 30

Prove to a computer who you are, use:

What you know

Password-
PIN-
Security Questions-

What you are

Fingerprint-
Hand geometry-
Face-

What you have

Email-
Phone number-
TFA hardware-

Password Based Authentication: User sets password, server checks request for equality

Attack: Remote guessing attack

Untargeted: guess probably passwords against all user accounts-
Targeted: target specific user by using tailored guess based on user's name, email, DoB, etc-

Problem: should not store passwords as plaintext

Hashing: hash password and store to database, compare hashes of request and stored hash

Can be brute forced by hashing common passwords and comparing to hashed passwords▪

-

Salting: add random value to end of password, random for each user

Attacker would have to guess common passwords with each user's salt▪

-

Pepper: Global secret stored separately from database-
Problem: Hashing is quick, attackers can brute force

Slow hash function to slow down brute force attacks

PBKDF2 - multiple iterations of hash function to slow down, still not slow enough!▪

Scrypt - requires a lot of memory to compute, slows down computation and increases cost of brute force hardware▪

-

Problem: poor usability leads users to pick weak passwords and reuse passwords

Password managers: store passwords and encrypt using master password

Trust issues▪

Can be hacked▪

UI issues, does not work everywhere▪

-

Two Factor Authentication: Add an additional method of authentication

OTP: send one time password through SMS, email

Insecure to SIM-swap attack-

-

Time Based OTP: Create OTP based on current time, sync server and TOTP using secret key-

Biometrics: Use physiological or behavioral traits

Types:

Faceprint-
Fingerprint-
Keystroke dynamics-
Signature-

Universality: everyone should be able to use it

Distinctiveness: should be unique to everyone

Permanence: should not change over time

Collectability: should be easy to measure trait

Performance: should be easy to match

Acceptability: should be acceptable (socially) to use

Circumvention: should be hard to spoof or bypass

Challenges:

Low accuracy: High false accept rate, high false reject rate-

Can't hash biometrics - fingerprint reading may change slightly each time

Need to encrypt data for biometrics-
Can use TPM hardware support-

Attacks:

Spoofing: fake fingerprint, MasterPrint leverages error in matching algorithms-

Can’t be changed if compromised

Token Based Authentication: Use physical tokens to generate code

Use public/private cryptography

Server & Client generate public key-
Client generates private key-
Server challenges login attempt to prove it has the private key-

-

User Authentication
Thursday, June 1, 2023 3:30 PM

 CSE 127 Page 31

Attack vectors:

Mobile platforms:

Applications isolated:

run in separate execution context○

No default access to file system, devices○

-

App store:

Vendor controlled○

App signing: vendor issued or self-signed○

Permissions are user approved○

-

Android architecture:

Try to prevent attacks by limiting application access to resources-

Rooting: leverage vulnerability in firmware to install su, can run programs as root

Permissions: Asked at use or asked at install

Permission Re-Delegation:

Mobile Security
Tuesday, June 6, 2023 3:25 PM

 CSE 127 Page 32

Application Signing:

Often self-signed certificates-

Signed application certificate defines which user ID is associated with which applications

Different apps run under different UIDs○

-

Shared UID feature

Apps with the signed with the same key can declare a share UID○

-

Other Mitigations:

 CSE 127 Page 33

